На одной математической олимпиаде есть такое правило. Всего предлагается решить 30 задач разного уровня сложности. За решение одной лёгкой задачи засчитывается 3 балла, за решение задачи средней сложности - 5 баллов, за решение сложной задачи - 10 баллов. При этом за неверное решение одной лёгкой задачи с общего количества баллов снимается 1 балл, за неверное решение задачи средней сложности снимается 2 балла, за неверное решение сложной задачи снимается 4 балла.
Участник олимпиады решил все предложенные задачи, но оценочная комиссия признала, что верно были решены только некоторые задачи: половина всех лёгких задач, треть всех задач средней сложности и четверть всех сложных задач. Сколько задач каждого уровня сложности решил участник, если известно, что число баллов, которое он набрал (после вычета всех "штрафных" баллов), в 17 раз меньше максимально возможного количества баллов?