Площадь треугольника

Все высоты треугольника меньше 1. Может ли его площадь быть больше 10000 квадратных единиц? 

Ответ: Может. Таким будет, например, равнобедренный треугольник, основание которого равно 80000, а высота к основанию равна 0.5.

Ваша оценка: Нет Средняя: 3.4 (73 оценки)


Комментарии

А теперь примерно представьте длину двух других высот и убедитесь в ложности вашего примера

Площать S = 20000. Боковые стороны стремятся к 40000 (чуть больше). А теперь исходя из площади, вычисляем высоту к боковой стороне: 20000*2/(чуть больше 40000) = (чуть меньше 1)

Площать S = 20000. Боковые стороны стремятся к 40000 (чуть больше). А теперь исходя из площади, вычисляем высоту к боковой стороне: 20000*2/(чуть больше 40000) = (чуть меньше 1)

вот полностью согласен

Площадь треуг S=1/2*b*h, соответственно найдутся пары высот и оснований дающие токую площадь

Пусть основание 80000, высота 0.5, тогда площадь 20000, две равнобедренные стороны примерно равны 40000, тогда две другие высоты треугольника равны 1

Поправка, две другие высоты будут чуть меньше 1.

Тогда не выполняется условие, что все! высоты меньше 1.

смысл в том что многие высоту представляют внутри треугольника,а в данной задаче высота будет не внутри треугольника

По условию задачи ВСЕ высоты треугольника меньше 1.
В треугольнике, в котором основание 8000 по крайней мере одна высота намного больше 1!!!???