Имеются 6 гирь весом 1, 2, 3, 4, 5 и 6 г. На них нанесена соответствующая маркировка. Однако есть основания считать, что при маркировке была допущена одна ошибка (перепутана маркировка двух гирь). Как при помощи двух взвешиваний на чашечных весах, на которых можно сравнить веса любых групп гирь, определить, верна ли имеющаяся на гирях маркировка?
Ответ: На одну чашу весов кладем гири, маркированные 1, 2 и 3 г., а на другую - 6 г. Равновесие означает, что ошибка в маркировке возможна лишь внутри групп 1-2-3 и 4-5. При втором взвешивании на одну чашу кладем гири 3 и 5 г., на другую - 6 и 1 г. Если первая чаша перевесила, то ошибки в маркировке нет.
Комментарии
Туфта ответ, автор с логикой не дружит - в ответе автора на одной чаше гири 1+2+3 на другой 6г, далее "Равновесие означает, что ошибка в маркировке возможна лишь внутри групп 1-2-3 и 4-5", т.е. для группы 1+2+3 не равно 6 (в этом случае две ошиби маркировки или ошибки нет).
Насколько вес гири отконен от номинала неизвестно, но автор утверждает, что при втором взвешивании если группа 3+5 перевесит 6+1 то все ОК, но если ошибка и гиря 5 весит 6г то условие собдюдено, но ошибка не выявлена.
Правильно:
6+4 и 5+3+2
3 и 1+2
мне кажется, что здесь в условии чего-то не хватает или условие не верное.
При первом взвешивании может как правая так и левая перевесить. "На одну чашу весов кладем гири, маркированные 1, 2 и 3 г., а на другую - 6 г. ". Т.е. в группе 1,2,3 г может быть не правильная маркировка так а в 6 г может быть ошибка.
Тогда дальнейшая тория автора летит в пух и прах. Так что у меня сомнения, по поводу двух взвешиваний.
там если 6 перевешивает, значит дальше и думать не надо, ошибка в 6 гире
ответ автора правильный!
Ответ правильный!
6 и 1 2 3
4 5 и 3 6
или во 2м 5+1 и 4+2, или 5+2 и 4+3
4 5 и 6 1 2
3 и 1 2
Прочитав решение, стал сомневаться, что правильно понял условие. Вот фраза "Однако есть основания считать, что при маркировке гирь допущена одна ошибка" - что значит? Что вес одной из гирь не совпадает с маркировкой? Или что маркировки двух гирь перепутаны?
В первом случае все просто:
1. сравниваем 6+4 и 2+3+5
2. сравниваем 1+2 и 3
таким образом, мы задействуем все возможные гири, и если хоть один раз увидим неравенство - значит какая-то из гирь маркирована не правильно.
Привет всем,
4 и 6 местами перепутаны и увас этого не видно,
Приветы
а если так,
6+4=2+3+5,
1+5=2+4,
Ест 15 комбинации,
1&2,~~1&3,~1&4,~1&5,~1&6,
2&3,~2&4,~2&5,~2&6,
3&4,~3&5,~3&6,
4&5,~4&6,~и~5&6,
Ивсе версии проверены,
Убедитесь
Спасибо
Эту задачу обычно формулируют иначе - "может быть перепутана маркировка каких-то гирь" (без слова "двух"), то есть все гири разные, от 1 до 6, на всех написаны разные веса, от 1 до 6, и больше ничего не известно - хоть все веса в обратном порядке. В этом случае исходное решение проходит, а Ваше - нет.